Merge branch 'arduino' into 'main'

Arduino Version

See merge request projekte/led-cube-555!1
This commit is contained in:
Ingo Rohlf 2024-08-17 10:47:15 +00:00
commit db4e4da799
9 changed files with 1593 additions and 0 deletions

53
src/CubeRegister.cpp Normal file
View file

@ -0,0 +1,53 @@
#include "CubeRegister.h"
void CubeRegister::reset() {
// Port B Pin 8 - 13
//Serial.println("reset");
DDRB |= _SER; // _SER als Output
DDRB |= _OE; // _OE als Output
DDRB |= _RCLK; // _RCLK als Output
DDRB |= _SRCLK; // _SRCLK als Output
DDRB |= _SRCLR; // _SRCLR als Output
output_disable();
clear_register();
register_to_output();
// Serial.println(PORTB);
};
void CubeRegister::output_enable() {
// OUTPUT für OE auf 0 setzen
PORTB &= ~_OE; // -> LOW
};
void CubeRegister::output_disable() {
// OUTPUT für OE auf 1 setzen
PORTB |= _OE; //-> HIGH
};
void CubeRegister::clear_register() {
PORTB |= _SRCLR; // -> HIGH
PORTB &= ~_SRCLK; // -> LOW
PORTB &= ~_RCLK; // -> LOW
PORTB &= ~_SRCLR; // -> LOW
PORTB &= ~_SRCLR; // -> LOW
PORTB |= _SRCLR; // -> HIGH
};
void CubeRegister::shift_bit(bool bit) {
//Serial.println("shift_bit " + (String)(bit));
if (bit == LOW) {
PORTB &= ~_SER; // -> LOW
} else {
PORTB |= _SER; // -> HIGH
}
PORTB |= _SRCLK; // -> HIGH
PORTB &= ~_SRCLK; // -> LOW
};
void CubeRegister::register_to_output() {
//Serial.println("register_to_output");
// PORTB &= ~_RCLK; // -> LOW
PORTB |= _RCLK; // -> HIGH
//Serial.println(PORTB);
PORTB &= ~_RCLK; // -> LOW
// Serial.println(PORTB);
};

73
src/CubeRegister.h Normal file
View file

@ -0,0 +1,73 @@
#ifndef __CubeRegister__
#define __CubeRegister__
#include <Arduino.h>
class CubeRegister {
public:
static const byte _SER = 0x10; // 0b00010000;
static const byte _OE = 0x08; // 0b00001000;
static const byte _RCLK = 0x04; // 0b00000100;
static const byte _SRCLK = 0x02; // 0b00000010;
static const byte _SRCLR = 0x01; // 0b00000001;
void reset(void);
void output_enable(void);
void output_disable(void);
void clear_register(void);
void shift_bit(bool bit);
void register_to_output(void);
};
/*
Version with digitalWrite
#define PIN_SER 12
#define PIN_OE 11
#define PIN_RCLK 10
#define PIN_SRCLK 9
#define PIN_SRCLR 8
class ShiftRegisterSlow {
public:
void reset() {
pinMode(PIN_SER, OUTPUT);
pinMode(PIN_OE, OUTPUT);
pinMode(PIN_RCLK, OUTPUT);
pinMode(PIN_SRCLK, OUTPUT);
pinMode(PIN_SRCLR, OUTPUT);
output_disable();
clear_register();
register_to_output();
}
void output_enable() {
digitalWrite(PIN_OE, LOW);
}
void output_disable() {
digitalWrite(PIN_OE, HIGH);
}
void clear_register() {
digitalWrite(PIN_SRCLR, HIGH);
digitalWrite(PIN_SRCLK, LOW);
digitalWrite(PIN_RCLK, LOW);
digitalWrite(PIN_SRCLR, LOW);
digitalWrite(PIN_SRCLR, LOW);
digitalWrite(PIN_SRCLR, HIGH);
}
void shift_bit(bool bit) {
digitalWrite(PIN_SER, bit);
digitalWrite(PIN_SRCLK, HIGH);
digitalWrite(PIN_SRCLK, LOW);
}
void register_to_output() {
digitalWrite(PIN_RCLK, HIGH);
digitalWrite(PIN_RCLK, LOW);
}
};
*/
#endif

518
src/LedCube555_V1.ino_V1 Normal file
View file

@ -0,0 +1,518 @@
#include <Arduino.h>
#include "./Timer1.h"
#include "CubeRegister.h"
typedef void(*CubeEffects)(unsigned int frame);
#define CUBESIZE 5
//ShiftRegisterSlow Register ;
CubeRegister Register ;
#define FPS 60
#define LEDLEVEL 8
byte cube[CUBESIZE][CUBESIZE][CUBESIZE];
volatile unsigned long frame = 0;
unsigned long start;
unsigned long ende;
class LED {
public:
byte x;
byte y;
byte z;
byte value;
void show() {
cube[x][y][z] = value;
}
void hide() {
cube[x][y][z] = 0;
}
void randomize() {
x = random(CUBESIZE + 1);
y = random(CUBESIZE + 1);
z = random(CUBESIZE + 1);
value = random(LEDLEVEL + 1);
}
};
class Vector {
public:
int dx;
int dy;
int dz;
};
void draw_cube_layer(byte layer, byte level) {
for (byte z = 0; z < CUBESIZE; z++) {
Register.shift_bit(z == layer);
}
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
Register.shift_bit((cube[x][y][layer] > level));
}
}
Register.register_to_output();
}
void setup() {
// Disable Arduino's default millisecond counter (from now on, millis(), micros(),
// delay() and delayMicroseconds() will not work)
Serial.begin(115200);
//disableMillis();
Register.reset();
Register.output_enable();
//randomize_cube();
// Prepare Timer1 to count
// On 16 MHz Arduino boards, this function has a resolution of 4us
// On 8 MHz Arduino boards, this function has a resolution of 8us
startTimer1(1000000 / (FPS * LEDLEVEL * CUBESIZE));
//draw_cube_layer(1, 1);
}
/*
void randomize_cube() {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
}
*/
void fill_cube(byte brightness) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = min(brightness, LEDLEVEL);
}
}
}
}
/*
void gravity_cube(int x,int y, int z){
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = ;
}
}
}
}
*/
void dimm_cube(int diff = -1) {
diff = constrain(diff, -LEDLEVEL, LEDLEVEL);
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = constrain( cube[x][y][z] + diff, 0, LEDLEVEL);
/* if (cube[x][y][z] > LEDLEVEL) {
cube[x][y][z] = LEDLEVEL;
} else if (cube[x][y][z] < 0) {
cube[x][y][z] = 0;
}*/
}
}
}
}
const unsigned long CHAR_5BIT[42] = {
0B0111010001111111000110001, // 0 A (97/65)
0B1111110001111101000111111, // 1 B
0B0111110000100001000001111, // 2 C
0B1111010001100011000111110, // 3 D
0B1111110000111101000011111, // 4 E
0B1111110000111001000010000, // 5 F
0B0111110000100111000101111, // 6 G
0B1000110001111111000110001, // 7 H
0B0111000100001000010001110, // 8 I
0B0001100001000011000101111, // 9 J
0B1000110010111001001010001, // 10 K
0B1000010000100001000011111, // 11 L
0B1000111011101011000110001, // 12 M
0B1000111001101011001110001, // 13 N
0B0111010001100011000101110, // 14 O
0B1111010001111101000010000, // 15 P
0B1111110001101011111100010, // 16 Q
0B1111010001111101000110001, // 17 R
0B0111110000011100000111110, // 18 S
0B1111100100001000010000100, // 19 T
0B1000110001100011000101110, // 20 U
0B1000110001010100101000100, // 21 V
0B1000110001101011010101010, // 22 W
0B1000101010001000101010001, // 23 X
0B1000110001010100010000100, // 24 Y
0B1111100010001000100011111, // 25 Z (122/90)
0B0111010011101011100101110, // 26 ZERO (48)
0B0010001100001000010001110, // 27 ONE (49)
0B1111000001011101000011111, // 28 TWO (50)
0B1111000001011100000111110, // 29 THREE
0B0010001000101001111100100, // 30 FOUR
0B1111110000111100000111110, // 31 FIVE
0B1111110000111101000111110, // 32 SIX
0B1111100001000100010000100, // 33 SEVEN
0B0111010001011101000101110, // 34 EIGHT
0B0111010001011110000111110, // 35 NINE (57)
0B0000000000000000000000000, // 36 SPACE (32)
0B0010000100001000000000100, // 37 EXCL (33)
0B0000000100000000000000100, // 38 COLON (58)
0B0000000000000000000000100, // 39 POINT (46)
0B0000000000000000010001000, // 40 COMMA (44)
0B0000001010111110111000100 // 41 @ -> Herz (44)
};
unsigned long char_to_5bits(char zeichen) {
// special chars
switch (zeichen) {
case 32: return CHAR_5BIT[36];
case 33: return CHAR_5BIT[37];
case 58: return CHAR_5BIT[38];
case 46: return CHAR_5BIT[39];
case 44: return CHAR_5BIT[40];
case 64: return CHAR_5BIT[41];
}
// upper case letters
if ((zeichen >= 65) & (zeichen <= 90)) {
return CHAR_5BIT[zeichen - 65];
}
// lower case letters
if ((zeichen >= 97) & (zeichen <= 122)) {
return CHAR_5BIT[zeichen - 97];
}
// digits
if ((zeichen >= 48) & (zeichen <= 57)) {
return CHAR_5BIT[zeichen - 22];
}
}
void write_char(char zeichen, int ebene, byte brightness = LEDLEVEL) {
ebene = constrain(ebene, 0, CUBESIZE - 1);
unsigned long pattern = char_to_5bits(zeichen);
unsigned long mask = 0B1000000000000000000000000;
Serial.println("\nPattern: " + (String)(pattern));
for (byte y = 0; y < CUBESIZE; y++) {
for (byte x = 0; x < CUBESIZE; x++) {
Serial.print( pattern & mask );
if (pattern & mask) {
cube[(CUBESIZE - 1) - x][ebene][y] = brightness ;
} else {
cube[(CUBESIZE - 1) - x][ebene][y] = 0 ;
}
mask >>= 1;
//mask = mask << 1;
}
}
}
void hello_cube(int duration) {
const char* message = "mama ist die beste!@!@@ " ;
for (size_t mp = 0; mp < strlen(message); mp++ ) {
int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -2);
write_char(message[mp], max(s, 0), LEDLEVEL);
s--;
delay(50);
}
delay(200);
}
}
void text_cube(const char *message){
for (size_t mp = 0; mp < strlen(message); mp++ ) {
int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -2 );
write_char(message[mp], max(s, 0), LEDLEVEL);
s--;
delay(50);
}
delay(200);
}
}
void glow_cube(int duration) {
ende = millis() + duration * 1000;
int glow = 0;
int glch = 1;
fill_cube(glow);
while (millis() < ende) {
glow += glch; // ((ende - millis()) / 200) % (LEDLEVEL + 1);
if (glow <= 0){
glow = 0;
glch = 1;
} else if (glow >= LEDLEVEL){
glow = LEDLEVEL;
glch = -1;
}
fill_cube(glow);
delay(100);
}
}
void glitzer_cube(int duration) {
start = millis();
ende = millis() + duration * 1000;
//while ((millis() - start) < 5000 ) {
while (millis() < ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (random(2) > 0) {
cube[x][y][z] = LEDLEVEL;
} else {
cube[x][y][z] = 0;
}
}
}
}
delay(50);
}
}
void glitzer_cube_levels(int duration) {
start = millis();
ende = millis() + duration * 1000;
//while ((millis() - start) < 5000 ) {
while (millis() < ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
delay(50);
}
}
void glitzer_fade_cube(int duration) {
int cleanup = 5;
fill_cube(0);
/*for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = 0;
}
}
}*/
/* for (byte n = 0; n < traces; n++) {
punkt.randomize();
punkt.show();
}
*/
ende = millis() + duration * 1000;
while (millis() < ende) {
//while ((millis() - start) < 10000 ) {
//punkt.randomize();
//punkt.show();
cube[random(CUBESIZE)][random(CUBESIZE)][random(CUBESIZE)] = random(LEDLEVEL + 1);
cube[random(CUBESIZE)][random(CUBESIZE)][random(CUBESIZE)] = random(LEDLEVEL + 1);
delay(25);
cleanup --;
if (cleanup <= 0) {
cleanup = 5;
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (cube[x][y][z] > 0) {
cube[x][y][z] --;
}
}
}
}
}
}
}
void dots_cube(int duration) {
byte x;
byte y;
int speed = 50;
fill_cube(0);
for ( x = 0; x < CUBESIZE; x++) {
for ( y = 0; y < CUBESIZE; y++) {
cube[x][y][0] = LEDLEVEL;
}
}
ende = millis() + duration * 1000;
while (millis() < ende) {
x = random(CUBESIZE);
y = random(CUBESIZE);
if (cube[x][y][0] == 0) {
for (int z = CUBESIZE - 1; z >= 0; --z) {
if (z <= (CUBESIZE - 2))
cube[x][y][z + 2] = 0;
cube[x][y][z + 1] = LEDLEVEL / 2;
cube[x][y][z] = LEDLEVEL;
delay(speed);
}
} else {
for (int z = 1; z < CUBESIZE; z++) {
if (z >= 2)
cube[x][y][z - 2] = 0;
cube[x][y][z - 1] = LEDLEVEL / 2;
cube[x][y][z] = LEDLEVEL;
delay(speed);
}
}
for (byte z = 1; z < CUBESIZE - 1; z++) {
cube[x][y][z] = 0;
}
}
}
void template_cube(int duration) {
// prepare something
ende = millis() + duration * 1000;
while (millis() < ende) {
// manipulate cube[][][]
delay(25);
}
}
void traces_cube() {
start = millis();
int traces = 5;
LED origin[traces];
LED leds[traces];
LED ziel[traces];
int steps[traces];
int pos[traces];
for (byte n = 0; n < traces; n++) {
origin[n] = LED();
origin[n].randomize();
origin[n].z = 0;
leds[n] = LED();
ziel[n] = LED();
ziel[n].randomize();
ziel[n].z = CUBESIZE - 1;
steps[n] = random(5, 20);
pos[n] = 0;
}
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = 0;
}
}
}
while ((millis() - start) < 5000 ) {
for (byte n = 0; n < traces; n++) {
leds[n].hide();
pos[n] ++;
leds[n].x = origin[n].x + ( (ziel[n].x - origin[n].x) * pos[n] / steps[n]);
leds[n].y = origin[n].y + ( (ziel[n].y - origin[n].y) * pos[n] / steps[n]);
leds[n].z = (origin[n]).z + ( ((ziel[n]).z - origin[n].z) * pos[n] / steps[n]);
leds[n].show();
}
delay(100);
}
}
void loop() {
int next_duration = random(5, 10);
switch (random(0, 10)) {
case 0:
glow_cube(next_duration);
break;
case 1:
glitzer_cube(next_duration);
break;
case 2:
glitzer_cube_levels(next_duration);
break;
case 3:
glitzer_fade_cube(next_duration);
break;
case 4:
dots_cube(next_duration);
break;
case 5:
text_cube("i@u");
break;
case 6:
text_cube("benjamin");
break;
case 7:
text_cube("annika");
break;
}
/* glitzer_cube(random(5, 20));
glitzer_fade_cube(random(5, 20));
*/
}
// Define the function which will handle the notifications (interrupts)
ISR(timer1Event)
{
// if (Serial)
// Serial.println(frame);
// Reset Timer1 (resetTimer1 should be the first operation for better timer precision)
resetTimer1();
// For a smaller and faster code, the line above could safely be replaced with a call
// to the function resetTimer1Unsafe() as, despite its name, it IS safe to call
// that function in here (interrupts are disabled)
// Make sure to do your work as fast as possible, since interrupts are automatically
// disabled when this event happens (refer to interrupts() and noInterrupts() for
// more information on that)
draw_cube_layer(frame % CUBESIZE, frame % LEDLEVEL);
frame ++;
}

668
src/LedCube555_V2.ino Normal file
View file

@ -0,0 +1,668 @@
#include <Arduino.h>
#include "./Timer1.h"
#include "CubeRegister.h"
typedef void(*CubeEffects)(unsigned int frame);
#define CUBESIZE 5
//ShiftRegisterSlow Register ;
CubeRegister Register ;
#define FPS 60
#define LEDLEVEL 8
byte cube[CUBESIZE][CUBESIZE][CUBESIZE];
volatile unsigned long frame = 0;
unsigned long start;
unsigned long ende;
void draw_cube_layer(byte layer, byte level) {
for (byte z = 0; z < CUBESIZE; z++) {
Register.shift_bit(z == layer);
}
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
Register.shift_bit((cube[x][y][layer] > level));
}
}
Register.register_to_output();
}
void setup() {
// Disable Arduino's default millisecond counter (from now on, millis(), micros(),
// delay() and delayMicroseconds() will not work)
Serial.begin(115200);
//disableMillis();
Register.reset();
Register.output_enable();
//randomize_cube();
// Prepare Timer1 to count
// On 16 MHz Arduino boards, this function has a resolution of 4us
// On 8 MHz Arduino boards, this function has a resolution of 8us
startTimer1(1000000 / (FPS * LEDLEVEL * CUBESIZE));
//draw_cube_layer(1, 1);
}
/*
void randomize_cube() {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
}
*/
void fill_cube(byte brightness) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = min(brightness, LEDLEVEL);
}
}
}
}
/*
void gravity_cube(int x,int y, int z){
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = ;
}
}
}
}
*/
void dimm_cube(int diff = -1) {
diff = constrain(diff, -LEDLEVEL, LEDLEVEL);
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = constrain( cube[x][y][z] + diff, 0, LEDLEVEL);
/* if (cube[x][y][z] > LEDLEVEL) {
cube[x][y][z] = LEDLEVEL;
} else if (cube[x][y][z] < 0) {
cube[x][y][z] = 0;
}*/
}
}
}
}
void rotate_ac_cube(int steps) {
byte x = 0;
byte y = 0;
byte backup;
for (int s = 0 ; s <= steps; s++) {
for (byte z = 0; z < CUBESIZE; z++) {
Serial.println("--------------- GO ---------");
Serial.println("Backup: 0,0" + (String)(backup));
backup = cube[0][0][z];
// shift west-side y=0, x=0..max
Serial.println("Links");
y = 0;
for ( x = 1; x < CUBESIZE; x++) {
Serial.println("x" + (String)(x - 1) + ",y" + (String)y + " <= " + "x" + (String)x + ",y" + (String)y);
cube[x - 1][y][z] = cube[x][y][z];
};
// shift north-side y=0..max, x = max
Serial.println("Vorne");
x = CUBESIZE - 1;
for (y = 1; y < CUBESIZE; y++) {
Serial.println("x" + (String)(x) + ",y" + (String)(y - 1) + " <= " + "x" + (String)x + ",y" + (String)y);
cube[x][y - 1][z] = cube[x][y][z];
}
// shift east-side y=max, x=max..1
Serial.println("Rechts");
y = CUBESIZE - 1;
for (x = CUBESIZE - 2 ; x < CUBESIZE; x--) {
Serial.println("x" + (String)(x + 1) + ",y" + (String)y + " <= " + "x" + (String)x + ",y" + (String)y);
cube[x + 1][y][z] = cube[x][y][z];
}
x = 0;
Serial.println("Hinten");
for (y = CUBESIZE - 2 ; y > 0; --y) {
Serial.println("x" + (String)(x) + ",y" + (String)(y + 1) + " <= " + "x" + (String)x + ",y" + (String)y);
cube[x][y + 1][z] = cube[x][y][z];
}
Serial.println("Backup: x0,y1 <= " + (String)(backup));
cube[0][1][z] = backup;
}
delay(50);
}
};
void rotate_cube(int steps, unsigned int frame_delay = 100) {
byte x = 0;
byte y = 0;
byte backup;
for (int s = 0 ; s < steps; s++) {
for (byte z = 0; z < CUBESIZE; z++) {
backup = cube[0][0][z];
// 0,0 -> 0,4 : v
x = 0;
for (y = 1; y < CUBESIZE ; y++) {
cube[x][y - 1][z] = cube[x][y][z];
};
y = CUBESIZE - 1;
for (x = 1; x < CUBESIZE ; x++) {
cube[x - 1][y][z] = cube[x][y][z];
}
x = CUBESIZE - 1;
for (y = CUBESIZE - 2 ; y < CUBESIZE ; --y) {
cube[x][y + 1][z] = cube[x][y][z] ;
}
y = 0 ;
for (x = CUBESIZE - 2 ; x < CUBESIZE ; --x) {
cube[x + 1][y][z] = cube[x][y][z];
}
cube[1][0][z] = backup;
}
delay(frame_delay);
}
};
const unsigned long CHAR_5BIT[] = {
0B0000000000000000000000000, // 36 SPACE (32)
0B0010000100001000000000100, // 37 ! (33)
0B0000001010010100000000000, // 36 " (34)
0B0101011111010101111101010, // 36 # (35)
0B0111010100011100010101110, // 36 $ (36)
0B0000101010001000101010000, // 36 % (37)
0B1000001100011001001011100, // 36 & (38) ??
0B0010000100000000000000000, // 36 '(39)
0B0001000100001000010000010, // 36 ( (40)
0B0100000100001000010001000, // 36 ) (41)
0B0000000100011100101000000, // 36 * (42)
0B0000000100011100010000000, // 36 + (43)
0B0000000000000000010001000, // 36 , (44)
0B0000000000011100000000000, // 36 - (45)
0B0000000000000000000000100, // 39 . (46)
0B0000100010001000100010000, // 36 / (45)
0B0111010011101011100101110, // 26 0 (48)
0B0010001100001000010001110, // 27 1 (49)
0B1111000001011101000011111, // 28 2 (50)
0B1111000001011100000111110, // 29 3
0B0010001000101001111100100, // 30 4
0B1111110000111100000111110, // 31 5
0B1111110000111101000111110, // 32 6
0B1111100001000100010000100, // 33 7
0B0111010001011101000101110, // 34 8
0B0111010001011110000111110, // 35 9 (57)
0B0000000100000000000000100, // 38 : (58)
0B0000000100000000010001000, // 38 ; (59)
0B0000100010001000000000001, // 38 < (60)
0B0000001110000000111000000, // 36 = (61)
0B1000001000001000100010000, // 38 > (62)
0B0111010001001100000000100, // 38 ? (63)
0B0111010111100010111001100, // 38 @ (64
0B0111010001111111000110001, // 0 A (97/65)
0B1111110001111101000111111, // 1 B
0B0111110000100001000001111, // 2 C
0B1111010001100011000111110, // 3 D
0B1111110000111101000011111, // 4 E
0B1111110000111001000010000, // 5 F
0B0111110000100111000101111, // 6 G
0B1000110001111111000110001, // 7 H
0B0111000100001000010001110, // 8 I
0B0001100001000011000101111, // 9 J
0B1000110010111001001010001, // 10 K
0B1000010000100001000011111, // 11 L
0B1000111011101011000110001, // 12 M
0B1000111001101011001110001, // 13 N
0B0111010001100011000101110, // 14 O
0B1111010001111101000010000, // 15 P
0B1111110001101011111100010, // 16 Q
0B1111010001111101000110001, // 17 R
0B0111110000011100000111110, // 18 S
0B1111100100001000010000100, // 19 T
0B1000110001100011000101110, // 20 U
0B1000110001010100101000100, // 21 V
0B1000110001101011010101010, // 22 W
0B1000101010001000101010001, // 23 X
0B1000110001010100010000100, // 24 Y
0B1111100010001000100011111, // 25 Z (122/90)
0B0011100100001000010000111, // 38 [ (91)
0B1000001000001000001000001, // 38 \ (92)
0B1110000100001000010011100, // 38 ] (93)
0B0010001001000000000000000, // 36 ^ (94)
0B0000000000000000000011111, // 36 _ (95)
0B0010000001000000000000000, // 36 ` (96)
0B0011000100011000010000110, // 36 { (123)
0B0010000100001000010000100, // 36 | (124)
0B0110000100001100010001100, // 36 } (125)
0B0000001000101010001000000, // 36 ~ (126)
0B0000001010111110111000100 // 41 @ -> Herz (44)
};
unsigned long char_to_5bits(char zeichen) {
// upper case letters + digits
if ((zeichen >= 32) & (zeichen <= 96)) {
return CHAR_5BIT[zeichen - 32];
}
// lower case letters
if ((zeichen >= 97) & (zeichen <= 122)) {
return CHAR_5BIT[zeichen - 64];
}
// digits
if ((zeichen >= 123) & (zeichen <= 126)) {
return CHAR_5BIT[zeichen - 22];
}
return CHAR_5BIT[69];
}
// 5 * 5 bits/row, top to bottom
/*
const unsigned long CHAR_5BIT[42] = {
0B0111010001111111000110001, // 0 A (97/65)
0B1111110001111101000111111, // 1 B
0B0111110000100001000001111, // 2 C
0B1111010001100011000111110, // 3 D
0B1111110000111101000011111, // 4 E
0B1111110000111001000010000, // 5 F
0B0111110000100111000101111, // 6 G
0B1000110001111111000110001, // 7 H
0B0111000100001000010001110, // 8 I
0B0001100001000011000101111, // 9 J
0B1000110010111001001010001, // 10 K
0B1000010000100001000011111, // 11 L
0B1000111011101011000110001, // 12 M
0B1000111001101011001110001, // 13 N
0B0111010001100011000101110, // 14 O
0B1111010001111101000010000, // 15 P
0B1111110001101011111100010, // 16 Q
0B1111010001111101000110001, // 17 R
0B0111110000011100000111110, // 18 S
0B1111100100001000010000100, // 19 T
0B1000110001100011000101110, // 20 U
0B1000110001010100101000100, // 21 V
0B1000110001101011010101010, // 22 W
0B1000101010001000101010001, // 23 X
0B1000110001010100010000100, // 24 Y
0B1111100010001000100011111, // 25 Z (122/90)
0B0111010011101011100101110, // 26 ZERO (48)
0B0010001100001000010001110, // 27 ONE (49)
0B1111000001011101000011111, // 28 TWO (50)
0B1111000001011100000111110, // 29 THREE
0B0010001000101001111100100, // 30 FOUR
0B1111110000111100000111110, // 31 FIVE
0B1111110000111101000111110, // 32 SIX
0B1111100001000100010000100, // 33 SEVEN
0B0111010001011101000101110, // 34 EIGHT
0B0111010001011110000111110, // 35 NINE (57)
0B0000000000000000000000000, // 36 SPACE (32)
0B0010000100001000000000100, // 37 EXCL (33)
0B0000000100000000000000100, // 38 COLON (58)
0B0000000000000000000000100, // 39 POINT (46)
0B0000000000000000010001000, // 40 COMMA (44)
0B0000001010111110111000100 // 41 @ -> Herz (44)
};
*/
unsigned long char_to_5bits__(char zeichen) {
// special chars
switch (zeichen) {
case 32: return CHAR_5BIT[36];
case 33: return CHAR_5BIT[37];
case 58: return CHAR_5BIT[38];
case 46: return CHAR_5BIT[39];
case 44: return CHAR_5BIT[40];
case 64: return CHAR_5BIT[41];
}
// upper case letters
if ((zeichen >= 65) & (zeichen <= 90)) {
return CHAR_5BIT[zeichen - 65];
}
// lower case letters
if ((zeichen >= 97) & (zeichen <= 122)) {
return CHAR_5BIT[zeichen - 97];
}
// digits
if ((zeichen >= 48) & (zeichen <= 57)) {
return CHAR_5BIT[zeichen - 22];
}
}
void write_char(char zeichen, int ebene = 0, byte brightness = LEDLEVEL) {
ebene = constrain(ebene, 0, CUBESIZE - 1);
unsigned long pattern = char_to_5bits(zeichen);
unsigned long mask = 0B1000000000000000000000000;
Serial.println("\nPattern: " + (String)(pattern));
for (byte y = 0; y < CUBESIZE; y++) {
for (byte x = 0; x < CUBESIZE; x++) {
Serial.print( pattern & mask );
if (pattern & mask) {
cube[(CUBESIZE - 1) - x][ebene][y] = brightness ;
} else {
cube[(CUBESIZE - 1) - x][ebene][y] = 0 ;
}
mask >>= 1;
//mask = mask << 1;
}
}
}
void banner_cube(const char *message, int frame_delay = 100) {
unsigned long pattern;// = char_to_5bits(zeichen);
unsigned long mask;// = 0B1000000000000000000000000;
for (size_t mp = 0; mp < strlen(message); mp++ ) {
pattern = char_to_5bits(message[mp]);
mask = 0B1000000000000000000000000;
for (byte y = 0; y < CUBESIZE; y++) {
mask = 0B1000000000000000000000000;
mask >>= y;// * CUBESIZE;
for (byte z = 0; z < CUBESIZE; z++) {
if (pattern & mask) {
cube[0][CUBESIZE - 1][z] = LEDLEVEL;
} else {
cube[0][CUBESIZE - 1][z] = 0;
}
cube[CUBESIZE - 1][CUBESIZE - 1][z] = 0;
mask >>= CUBESIZE;
}
rotate_cube(1, 150);
}
rotate_cube(1, 150);
}
for (byte cols = 0; cols < (CUBESIZE * 3 - 2); cols++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[CUBESIZE - 1][CUBESIZE - 1][z] = 0;
}
rotate_cube(1, 150);
}
}
void hello_cube(int duration) {
const char* message = "mama ist die beste!@!@@ " ;
for (size_t mp = 0; mp < strlen(message); mp++ ) {
int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -2);
write_char(message[mp], max(s, 0), LEDLEVEL);
s--;
delay(50);
}
delay(200);
}
fill_cube(0);
}
void text_cube(const char *message) {
for (size_t mp = 0; mp < strlen(message); mp++ ) {
int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -2 );
write_char(message[mp], max(s, 0), LEDLEVEL);
s--;
delay(50);
}
delay(200);
}
fill_cube(0);
}
void glow_cube(int duration) {
ende = millis() + duration * 1000;
int glow = 0;
int glch = 1;
fill_cube(glow);
while (millis() < ende) {
glow += glch; // ((ende - millis()) / 200) % (LEDLEVEL + 1);
if (glow <= 0) {
glow = 0;
glch = 1;
} else if (glow >= LEDLEVEL) {
glow = LEDLEVEL;
glch = -1;
}
fill_cube(glow);
delay(100);
}
}
void glitzer_cube(int duration) {
start = millis();
ende = millis() + duration * 1000;
//while ((millis() - start) < 5000 ) {
while (millis() < ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (random(2) > 0) {
cube[x][y][z] = LEDLEVEL;
} else {
cube[x][y][z] = 0;
}
}
}
}
delay(50);
}
}
void glitzer_cube_levels(int duration) {
start = millis();
ende = millis() + duration * 1000;
//while ((millis() - start) < 5000 ) {
while (millis() < ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
delay(50);
}
}
void glitzer_fade_cube(int duration) {
int cleanup = 5;
fill_cube(0);
/*for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = 0;
}
}
}*/
/* for (byte n = 0; n < traces; n++) {
punkt.randomize();
punkt.show();
}
*/
ende = millis() + duration * 1000;
while (millis() < ende) {
//while ((millis() - start) < 10000 ) {
//punkt.randomize();
//punkt.show();
cube[random(CUBESIZE)][random(CUBESIZE)][random(CUBESIZE)] = random(LEDLEVEL + 1);
cube[random(CUBESIZE)][random(CUBESIZE)][random(CUBESIZE)] = random(LEDLEVEL + 1);
delay(25);
cleanup --;
if (cleanup <= 0) {
cleanup = 5;
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (cube[x][y][z] > 0) {
cube[x][y][z] --;
}
}
}
}
}
}
}
void dots_cube(int duration) {
byte x;
byte y;
int speed = 50;
fill_cube(0);
for ( x = 0; x < CUBESIZE; x++) {
for ( y = 0; y < CUBESIZE; y++) {
cube[x][y][0] = LEDLEVEL;
}
}
ende = millis() + duration * 1000;
while (millis() < ende) {
x = random(CUBESIZE);
y = random(CUBESIZE);
if (cube[x][y][0] == 0) {
for (int z = CUBESIZE - 1; z >= 0; --z) {
if (z <= (CUBESIZE - 2))
cube[x][y][z + 2] = 0;
cube[x][y][z + 1] = LEDLEVEL / 2;
cube[x][y][z] = LEDLEVEL;
delay(speed);
}
} else {
for (int z = 1; z < CUBESIZE; z++) {
if (z >= 2)
cube[x][y][z - 2] = 0;
cube[x][y][z - 1] = LEDLEVEL / 2;
cube[x][y][z] = LEDLEVEL;
delay(speed);
}
}
for (byte z = 1; z < CUBESIZE - 1; z++) {
cube[x][y][z] = 0;
}
}
}
void template_cube(int duration) {
// prepare something
ende = millis() + duration * 1000;
while (millis() < ende) {
// manipulate cube[][][]
delay(25);
}
}
// const char* messages = {"I°U", "mama ist die allerbeste!°!°", "benjamin", "annika", "5x5x5 led-cube"};
static const char* const messages[] = {"I°U", "mama ist die allerbeste!°!°", "benjamin", "annika", "5x5x5 led-cube"};
int message_count = 5;
void loop() {
int next_duration = random(10, 20);
switch (random(0, 10)) {
case 0:
glow_cube(next_duration);
break;
case 1:
glitzer_cube(next_duration);
break;
case 2:
glitzer_cube_levels(next_duration);
break;
case 3:
glitzer_fade_cube(next_duration);
break;
case 4:
dots_cube(next_duration);
break;
case 6:
banner_cube(messages[random(message_count)]);
break;
case 7:
text_cube(messages[random(message_count)]);
break;
/*
case 8:
if (random(10) > 5)
text_cube("LED-Cube 5*5*5");
else
banner_cube("LED-Cube 5*5*5 ");
*/
/*write_char('v', 0);
write_char('x', 4);
rotate_cube(10);
fill_cube(0);*/
}
/* glitzer_cube(random(5, 20));
glitzer_fade_cube(random(5, 20));
*/
}
// Define the function which will handle the notifications (interrupts)
ISR(timer1Event)
{
// if (Serial)
// Serial.println(frame);
// Reset Timer1 (resetTimer1 should be the first operation for better timer precision)
resetTimer1();
// For a smaller and faster code, the line above could safely be replaced with a call
// to the function resetTimer1Unsafe() as, despite its name, it IS safe to call
// that function in here (interrupts are disabled)
// Make sure to do your work as fast as possible, since interrupts are automatically
// disabled when this event happens (refer to interrupts() and noInterrupts() for
// more information on that)
draw_cube_layer(frame % CUBESIZE, frame % LEDLEVEL);
frame ++;
}

169
src/Timer1.cpp Normal file
View file

@ -0,0 +1,169 @@
//
// ArduinoTimer is distributed under the FreeBSD License
//
// Copyright (c) 2013, Carlos Rafael Gimenes das Neves
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those
// of the authors and should not be interpreted as representing official policies,
// either expressed or implied, of the FreeBSD Project.
//
// https://github.com/carlosrafaelgn/ArduinoTimer
//
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "Timer1.h"
uint8_t __timer1Control;
uint16_t __timer1CounterValue;
// On 16 MHz Arduino boards, this function has a resolution of 4us, for intervals <= 262000, a resolution of 16us for intervals <= 1048000, and a resolution of 64us for intervals <= 4194000
// On 8 MHz Arduino boards, this function has a resolution of 8us, for intervals <= 524000, a resolution of 32us for intervals <= 2097000, and a resolution os 128us for intervals <= 8388000
void startTimer1(uint32_t microsecondsInterval) {
pauseTimer1();
// 18. Timer/Counter 0, 1, 3, 4, and 5 Prescaler (page 169)
// 17.9.1 Normal Mode (page 149)
TCCR1A = 0;
TCCR1C = 0;
// 17.11.5 TCCR1B (page 160)
// 0 0 0 No clock source (Timer/Counter stopped)
// 0 0 1 clkIO/1 (No prescaling)
// 0 1 0 clkIO/8 (From prescaler)
// 0 1 1 clkIO/64 (From prescaler)
// 1 0 0 clkIO/256 (From prescaler)
// 1 0 1 clkIO/1024 (From prescaler)
#if (F_CPU == 16000000L)
if (microsecondsInterval <= 262000L) {
__timer1Control = B00000011;
// The proper way of doing this would be:
// 65536 - (microsecondsInterval / 4)
// But, in order to save one 32-bit operation, this "- 1" is necessary...
__timer1CounterValue = 65535 - ((uint16_t)(microsecondsInterval >> 2) - 1);
} else if (microsecondsInterval <= 1048000L) {
__timer1Control = B00000100;
__timer1CounterValue = 65535 - ((uint16_t)(microsecondsInterval >> 4) - 1);
} else {
__timer1Control = B00000101;
__timer1CounterValue = 65535 - ((uint16_t)(microsecondsInterval >> 6) - 1);
}
#elif (F_CPU == 8000000L)
if (microsecondsInterval <= 524000L) {
__timer1Control = B00000011;
__timer1CounterValue = 65535 - ((uint16_t)(microsecondsInterval >> 3) - 1);
} else if (microsecondsInterval <= 2097000L) {
__timer1Control = B00000100;
__timer1CounterValue = 65535 - ((uint16_t)(microsecondsInterval >> 5) - 1);
} else {
__timer1Control = B00000101;
__timer1CounterValue = 65535 - ((uint16_t)(microsecondsInterval >> 7) - 1);
}
#else
#error("Unsupported CPU frequency")
#endif
resetTimer1();
// 17.11.37 TIFR1 <20> Timer/Counter1 Interrupt Flag Register (page 167)
TIFR1 = 0;
TIMSK1 = 1;
resumeTimer1();
}
// On 16 MHz Arduino boards, this function has a resolution of 4us
// On 8 MHz Arduino boards, this function has a resolution of 8us
void startCountingTimer1(void) {
pauseTimer1();
TCCR1A = 0;
TCCR1C = 0;
#if (F_CPU == 16000000L) || (F_CPU == 8000000L)
__timer1Control = B00000011;
__timer1CounterValue = 0;
#else
#error("Unsupported CPU frequency")
#endif
resetTimer1();
TIFR1 = 0;
TIMSK1 = 0;
resumeTimer1();
}
// On 16 MHz Arduino boards, this function has a resolution of 16us
// On 8 MHz Arduino boards, this function has a resolution of 32us
void startSlowCountingTimer1(void) {
pauseTimer1();
TCCR1A = 0;
TCCR1C = 0;
#if (F_CPU == 16000000L) || (F_CPU == 8000000L)
__timer1Control = B00000100;
__timer1CounterValue = 0;
#else
#error("Unsupported CPU frequency")
#endif
resetTimer1();
TIFR1 = 0;
TIMSK1 = 0;
resumeTimer1();
}
// On 16 MHz Arduino boards, this function has a resolution of 64us
// On 8 MHz Arduino boards, this function has a resolution of 128us
void startUltraSlowCountingTimer1(void) {
pauseTimer1();
TCCR1A = 0;
TCCR1C = 0;
#if (F_CPU == 16000000L) || (F_CPU == 8000000L)
__timer1Control = B00000101;
__timer1CounterValue = 0;
#else
#error("Unsupported CPU frequency")
#endif
resetTimer1();
TIFR1 = 0;
TIMSK1 = 0;
resumeTimer1();
}
uint16_t readTimer1(void) {
// 17.3 Accessing 16-bit Registers (page 138)
uint8_t sreg;
uint16_t i;
// Save global interrupt flag
// 7.4.1 SREG <20> AVR Status Register (page 14)
sreg = SREG;
// Disable interrupts
cli();
// Read TCNTn
i = readTimer1Unsafe();
// Restore global interrupt flag
SREG = sreg;
return i;
}
void resetTimer1(void) {
// 17.3 Accessing 16-bit Registers (page 138)
uint8_t sreg;
// Save global interrupt flag
// 7.4.1 SREG <20> AVR Status Register (page 14)
sreg = SREG;
// Disable interrupts
cli();
// Write TCNTn
resetTimer1Unsafe();
// Restore global interrupt flag
SREG = sreg;
}

112
src/Timer1.h Normal file
View file

@ -0,0 +1,112 @@
//
// ArduinoTimer is distributed under the FreeBSD License
//
// Copyright (c) 2013, Carlos Rafael Gimenes das Neves
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those
// of the authors and should not be interpreted as representing official policies,
// either expressed or implied, of the FreeBSD Project.
//
// https://github.com/carlosrafaelgn/ArduinoTimer
//
#ifndef Timer1_h
#define Timer1_h
// Reference documentation:
// http://www.atmel.com/devices/atmega2560.aspx
// http://www.atmel.com/devices/atmega328.aspx
//
// Timer 1 is available on ATmega168, ATmega328 and on ATmega2560
// All other timers are only available on ATmega2560
//
// (The page and chapter numbers refer to the ATmega2560 documentation)
//*********************************************************************************
// ATmega168, ATmega328: Using Timer 1 disables PWM (analogWrite) on pins 9 and 10
// ATmega2560: Using Timer 1 disables PWM (analogWrite) on pins 11 and 12
//*********************************************************************************
#include <inttypes.h>
// 16.9.6 TIMSK0 <20> Timer/Counter Interrupt Mask Register (page 134)
#ifndef disableMillis
#define disableMillis() TIMSK0 &= ~1
#endif
#ifndef enableMillis
#define enableMillis() TIMSK0 |= 1
#endif
#ifndef microsFromCounting
#if (F_CPU == 16000000L)
#define microsFromCounting(COUNTING) ((COUNTING) << 2)
#elif (F_CPU == 8000000L)
#define microsFromCounting(COUNTING) ((COUNTING) << 3)
#else
#error("Unsupported CPU frequency")
#endif
#endif
#ifndef microsFromSlowCounting
#if (F_CPU == 16000000L)
#define microsFromSlowCounting(SLOWCOUNTING) ((SLOWCOUNTING) << 4)
#elif (F_CPU == 8000000L)
#define microsFromSlowCounting(SLOWCOUNTING) ((SLOWCOUNTING) << 5)
#else
#error("Unsupported CPU frequency")
#endif
#endif
#ifndef microsFromUltraSlowCounting
#if (F_CPU == 16000000L)
#define microsFromUltraSlowCounting(SLOWCOUNTING) ((SLOWCOUNTING) << 6)
#elif (F_CPU == 8000000L)
#define microsFromUltraSlowCounting(SLOWCOUNTING) ((SLOWCOUNTING) << 7)
#else
#error("Unsupported CPU frequency")
#endif
#endif
extern uint8_t __timer1Control;
extern uint16_t __timer1CounterValue;
#define readTimer1Unsafe() TCNT1
#define resetTimer1Unsafe() TCNT1 = __timer1CounterValue
#define pauseTimer1() TCCR1B = 0
#define resumeTimer1() TCCR1B = __timer1Control
extern void startTimer1(uint32_t microsecondsInterval);
extern void startCountingTimer1(void);
extern void startSlowCountingTimer1(void);
extern void startUltraSlowCountingTimer1(void);
extern uint16_t readTimer1(void);
extern void resetTimer1(void);
// 17.9.1 Normal Mode (page 149)
// The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
// direction is always up (incrementing), and no counter clear is performed. The counter simply
// overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
// BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
// the same timer clock cycle as the TCNTn becomes zero. The TOVn Flag in this case behaves
// like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
// interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by software.
// There are no special cases to consider in the Normal mode, a new counter value can be
// written anytime.
#define timer1Event TIMER1_OVF_vect
#endif

Binary file not shown.

BIN
tools/Ebenen-Template.fcstd Normal file

Binary file not shown.

Binary file not shown.