Platformio #2

Merged
ingo merged 4 commits from platformio into main 2024-08-17 13:08:36 +02:00
12 changed files with 121 additions and 922 deletions
Showing only changes of commit 4c21998682 - Show all commits

View file

@ -4,11 +4,12 @@
#include "./Timer1.h" #include "./Timer1.h"
#include "CubeRegister.h" #include "CubeRegister.h"
#include <Arduino.h> #include <Arduino.h>
CubeRegister myRegister = CubeRegister(); CubeRegister myRegister = CubeRegister();
#define CUBESIZE 5 #define CUBESIZE 5
#define FPS 50 #define FPS 60
#define LEDLEVEL 16 #define LEDLEVEL 8
byte cube[CUBESIZE][CUBESIZE][CUBESIZE]; byte cube[CUBESIZE][CUBESIZE][CUBESIZE];
@ -54,46 +55,6 @@ void dimm_cube(int diff = -1) {
} }
} }
void cube_move_x(int diff) {
diff = constrain(diff, -CUBESIZE, CUBESIZE);
byte from;
for (byte v = 0; v < CUBESIZE; v++) {
from = (v + diff) % CUBESIZE;
for (byte a = 0; a < CUBESIZE; a++) {
for (byte b = 0; b < CUBESIZE; b++) {
cube[v][a][b] = cube[from][a][b];
}
}
}
}
void cube_move_y(int diff) {
diff = constrain(diff, -CUBESIZE, CUBESIZE);
byte from;
for (byte v = 0; v < CUBESIZE; v++) {
from = (v + diff) % CUBESIZE;
for (byte a = 0; a < CUBESIZE; a++) {
for (byte b = 0; b < CUBESIZE; b++) {
cube[a][v][b] = cube[a][from][b];
}
}
}
}
void cube_move_z(int diff) {
diff = constrain(diff, -CUBESIZE, CUBESIZE);
byte from;
for (byte v = 0; v < CUBESIZE; v++) {
from = (v + diff) % CUBESIZE;
for (byte a = 0; a < CUBESIZE; a++) {
for (byte b = 0; b < CUBESIZE; b++) {
cube[a][b][v] = cube[a][b][from];
}
}
}
}
void cube_rotate_cover(int steps, unsigned int frame_delay = 100) { void cube_rotate_cover(int steps, unsigned int frame_delay = 100) {
byte x = 0; byte x = 0;
byte y = 0; byte y = 0;

View file

@ -177,161 +177,5 @@ void cube_effect_dots(int duration = 0) {
} }
} }
}; };
void cube_life(int duration = 0) {
int speed = 50;
int value;
int min = LEDLEVEL * 2;
int max = LEDLEVEL * 4;
if (duration <= 0)
duration = random(MIN_DURATION, MAX_DURATION);
// mit zufallsmuster füllen
fill_cube(0);
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (random(100) >= 50) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
}
effect_ende = millis() + duration * 1000;
while (millis() < effect_ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
value = 0;
value += cube[(x - 1) % CUBESIZE][y][z];
value += cube[(x + 1) % CUBESIZE][y][z];
value += cube[x][(y - 1) % CUBESIZE][z];
value += cube[x][(y + 1) % CUBESIZE][z];
value += cube[x][y][(z - 1) % CUBESIZE];
value += cube[x][y][(z + 1) % CUBESIZE];
if ((value < min) || (value >= max)) {
if (cube[x][y][z] > 0) {
cube[x][y][z]--;
};
} else {
if (cube[x][y][z] < LEDLEVEL) {
cube[x][y][z]++;
};
}
}
}
}
delay(speed);
}
}
struct Dot {
byte x;
byte y;
byte z;
int vx;
int vy;
int vz;
byte value;
};
void cube_moving_dots(int duration = 0) {
int speed = 100;
int dotcount = 2;
Dot dots[dotcount];
//Dot dot;
for (byte d = 0; d < dotcount; d++) {
dots[d].x = random(CUBESIZE) * 10;
dots[d].y = random(CUBESIZE) * 10;
dots[d].z = random(CUBESIZE) * 10;
dots[d].vx = random(20) - 10;
dots[d].vy = random(20) - 10;
dots[d].vz = random(20) - 10;
dots[d].value = random(LEDLEVEL / 2, LEDLEVEL);
}
// Serial.println("cube: moving "+String(dotcount)+" dots");
if (duration <= 0)
duration = random(MIN_DURATION, MAX_DURATION);
effect_ende = millis() + duration * 1000;
// mit zufallsmuster füllen
fill_cube(0);
while (millis() < effect_ende) {
// dimm_cube(LEDLEVEL/-4);
// fill_cube(0);
for (byte d = 0; d < dotcount; d++) {
cube[dots[d].x / 10][dots[d].y / 10][dots[d].z / 10] = 0;
if (((dots[d].x + dots[d].vx) <= 0) ||
((dots[d].x + dots[d].vx) >= CUBESIZE * 10))
dots[d].vx = -dots[d].vx;
if (((dots[d].y + dots[d].vy) <= 0) ||
((dots[d].y + dots[d].vy) >= CUBESIZE * 10))
dots[d].vy = -dots[d].vy;
if (((dots[d].z + dots[d].vz) <= 0) ||
((dots[d].z + dots[d].vz) >= CUBESIZE * 10))
dots[d].vz = -dots[d].vz;
dots[d].x = (dots[d].x + dots[d].vx);
dots[d].y = (dots[d].y + dots[d].vy);
dots[d].z = (dots[d].z + dots[d].vz);
// Serial.println("Dot
// ["+String(dot.x)+"]["+String(dot.y)+"]["+String(dot.z)+"] /
// ["+String((int)dot.vx)+"]["+String((int)dot.vy)+"]["+String((int)dot.vz)+"]
// = "+String(dot.value));
cube[dots[d].x / 10][dots[d].y / 10][dots[d].z / 10] = dots[d].value;
}
delay(speed);
}
}
void cube_shifting_layer(int duration = 0) {
int speed = 50;
int value,x,y;
fill_cube(0);
for (x = 0; x < CUBESIZE; x++) {
for (y = 0; y < CUBESIZE; y++) {
cube[x][y][0] = LEDLEVEL;
}
}
if (duration <= 0)
duration = random(MIN_DURATION, MAX_DURATION);
effect_ende = millis() + duration * 1000;
while (millis() < effect_ende) {
value = random(4);
switch (value) {
case 0:
cube_move_x(1);
break;
case 1:
cube_move_x(-1);
break;
case 2:
cube_move_y(1);
break;
case 3:
cube_move_y(-1);
break;
case 4:
cube_move_z(1);
break;
case 5:
cube_move_z(-1);
break;
}
delay(speed);
}
}
#endif #endif

Binary file not shown.

View file

@ -1,53 +0,0 @@
#include "CubeRegister.h"
void CubeRegister::reset() {
// Port B Pin 8 - 13
//Serial.println("reset");
DDRB |= _SER; // _SER als Output
DDRB |= _OE; // _OE als Output
DDRB |= _RCLK; // _RCLK als Output
DDRB |= _SRCLK; // _SRCLK als Output
DDRB |= _SRCLR; // _SRCLR als Output
output_disable();
clear_register();
register_to_output();
// Serial.println(PORTB);
};
void CubeRegister::output_enable() {
// OUTPUT für OE auf 0 setzen
PORTB &= ~_OE; // -> LOW
};
void CubeRegister::output_disable() {
// OUTPUT für OE auf 1 setzen
PORTB |= _OE; //-> HIGH
};
void CubeRegister::clear_register() {
PORTB |= _SRCLR; // -> HIGH
PORTB &= ~_SRCLK; // -> LOW
PORTB &= ~_RCLK; // -> LOW
PORTB &= ~_SRCLR; // -> LOW
PORTB &= ~_SRCLR; // -> LOW
PORTB |= _SRCLR; // -> HIGH
};
void CubeRegister::shift_bit(bool bit) {
//Serial.println("shift_bit " + (String)(bit));
if (bit == LOW) {
PORTB &= ~_SER; // -> LOW
} else {
PORTB |= _SER; // -> HIGH
}
PORTB |= _SRCLK; // -> HIGH
PORTB &= ~_SRCLK; // -> LOW
};
void CubeRegister::register_to_output() {
//Serial.println("register_to_output");
// PORTB &= ~_RCLK; // -> LOW
PORTB |= _RCLK; // -> HIGH
//Serial.println(PORTB);
PORTB &= ~_RCLK; // -> LOW
// Serial.println(PORTB);
};

View file

@ -1,73 +0,0 @@
#ifndef __CubeRegister__
#define __CubeRegister__
#include <Arduino.h>
class CubeRegister {
public:
static const byte _SER = 0x10; // 0b00010000;
static const byte _OE = 0x08; // 0b00001000;
static const byte _RCLK = 0x04; // 0b00000100;
static const byte _SRCLK = 0x02; // 0b00000010;
static const byte _SRCLR = 0x01; // 0b00000001;
void reset(void);
void output_enable(void);
void output_disable(void);
void clear_register(void);
void shift_bit(bool bit);
void register_to_output(void);
};
/*
Version with digitalWrite
#define PIN_SER 12
#define PIN_OE 11
#define PIN_RCLK 10
#define PIN_SRCLK 9
#define PIN_SRCLR 8
class ShiftRegisterSlow {
public:
void reset() {
pinMode(PIN_SER, OUTPUT);
pinMode(PIN_OE, OUTPUT);
pinMode(PIN_RCLK, OUTPUT);
pinMode(PIN_SRCLK, OUTPUT);
pinMode(PIN_SRCLR, OUTPUT);
output_disable();
clear_register();
register_to_output();
}
void output_enable() {
digitalWrite(PIN_OE, LOW);
}
void output_disable() {
digitalWrite(PIN_OE, HIGH);
}
void clear_register() {
digitalWrite(PIN_SRCLR, HIGH);
digitalWrite(PIN_SRCLK, LOW);
digitalWrite(PIN_RCLK, LOW);
digitalWrite(PIN_SRCLR, LOW);
digitalWrite(PIN_SRCLR, LOW);
digitalWrite(PIN_SRCLR, HIGH);
}
void shift_bit(bool bit) {
digitalWrite(PIN_SER, bit);
digitalWrite(PIN_SRCLK, HIGH);
digitalWrite(PIN_SRCLK, LOW);
}
void register_to_output() {
digitalWrite(PIN_RCLK, HIGH);
digitalWrite(PIN_RCLK, LOW);
}
};
*/
#endif

Binary file not shown.

View file

@ -115,7 +115,7 @@ void cube_text_warp(const char *message) {
for (size_t mp = 0; mp < strlen(message); mp++) { for (size_t mp = 0; mp < strlen(message); mp++) {
int s = CUBESIZE - 1; int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) { for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -4); dimm_cube(LEDLEVEL / -2);
write_char(message[mp], max(s, 0), LEDLEVEL); write_char(message[mp], max(s, 0), LEDLEVEL);
s--; s--;
delay(50); delay(50);

5
src/src/LED.cpp Normal file
View file

@ -0,0 +1,5 @@
class Led{
};

11
src/src/LED.h Normal file
View file

@ -0,0 +1,11 @@
#include "Led.h"
Led::Led(byte x, byte y, byte z, byte brightness){
_x=x;
_y=y;
_z=z;
_brightness = brightness;
};

View file

@ -1,518 +0,0 @@
#include <Arduino.h>
#include "./Timer1.h"
#include "CubeRegister.h"
typedef void(*CubeEffects)(unsigned int frame);
#define CUBESIZE 5
//ShiftRegisterSlow Register ;
CubeRegister Register ;
#define FPS 60
#define LEDLEVEL 8
byte cube[CUBESIZE][CUBESIZE][CUBESIZE];
volatile unsigned long frame = 0;
unsigned long start;
unsigned long ende;
class LED {
public:
byte x;
byte y;
byte z;
byte value;
void show() {
cube[x][y][z] = value;
}
void hide() {
cube[x][y][z] = 0;
}
void randomize() {
x = random(CUBESIZE + 1);
y = random(CUBESIZE + 1);
z = random(CUBESIZE + 1);
value = random(LEDLEVEL + 1);
}
};
class Vector {
public:
int dx;
int dy;
int dz;
};
void draw_cube_layer(byte layer, byte level) {
for (byte z = 0; z < CUBESIZE; z++) {
Register.shift_bit(z == layer);
}
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
Register.shift_bit((cube[x][y][layer] > level));
}
}
Register.register_to_output();
}
void setup() {
// Disable Arduino's default millisecond counter (from now on, millis(), micros(),
// delay() and delayMicroseconds() will not work)
Serial.begin(115200);
//disableMillis();
Register.reset();
Register.output_enable();
//randomize_cube();
// Prepare Timer1 to count
// On 16 MHz Arduino boards, this function has a resolution of 4us
// On 8 MHz Arduino boards, this function has a resolution of 8us
startTimer1(1000000 / (FPS * LEDLEVEL * CUBESIZE));
//draw_cube_layer(1, 1);
}
/*
void randomize_cube() {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
}
*/
void fill_cube(byte brightness) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = min(brightness, LEDLEVEL);
}
}
}
}
/*
void gravity_cube(int x,int y, int z){
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = ;
}
}
}
}
*/
void dimm_cube(int diff = -1) {
diff = constrain(diff, -LEDLEVEL, LEDLEVEL);
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = constrain( cube[x][y][z] + diff, 0, LEDLEVEL);
/* if (cube[x][y][z] > LEDLEVEL) {
cube[x][y][z] = LEDLEVEL;
} else if (cube[x][y][z] < 0) {
cube[x][y][z] = 0;
}*/
}
}
}
}
const unsigned long CHAR_5BIT[42] = {
0B0111010001111111000110001, // 0 A (97/65)
0B1111110001111101000111111, // 1 B
0B0111110000100001000001111, // 2 C
0B1111010001100011000111110, // 3 D
0B1111110000111101000011111, // 4 E
0B1111110000111001000010000, // 5 F
0B0111110000100111000101111, // 6 G
0B1000110001111111000110001, // 7 H
0B0111000100001000010001110, // 8 I
0B0001100001000011000101111, // 9 J
0B1000110010111001001010001, // 10 K
0B1000010000100001000011111, // 11 L
0B1000111011101011000110001, // 12 M
0B1000111001101011001110001, // 13 N
0B0111010001100011000101110, // 14 O
0B1111010001111101000010000, // 15 P
0B1111110001101011111100010, // 16 Q
0B1111010001111101000110001, // 17 R
0B0111110000011100000111110, // 18 S
0B1111100100001000010000100, // 19 T
0B1000110001100011000101110, // 20 U
0B1000110001010100101000100, // 21 V
0B1000110001101011010101010, // 22 W
0B1000101010001000101010001, // 23 X
0B1000110001010100010000100, // 24 Y
0B1111100010001000100011111, // 25 Z (122/90)
0B0111010011101011100101110, // 26 ZERO (48)
0B0010001100001000010001110, // 27 ONE (49)
0B1111000001011101000011111, // 28 TWO (50)
0B1111000001011100000111110, // 29 THREE
0B0010001000101001111100100, // 30 FOUR
0B1111110000111100000111110, // 31 FIVE
0B1111110000111101000111110, // 32 SIX
0B1111100001000100010000100, // 33 SEVEN
0B0111010001011101000101110, // 34 EIGHT
0B0111010001011110000111110, // 35 NINE (57)
0B0000000000000000000000000, // 36 SPACE (32)
0B0010000100001000000000100, // 37 EXCL (33)
0B0000000100000000000000100, // 38 COLON (58)
0B0000000000000000000000100, // 39 POINT (46)
0B0000000000000000010001000, // 40 COMMA (44)
0B0000001010111110111000100 // 41 @ -> Herz (44)
};
unsigned long char_to_5bits(char zeichen) {
// special chars
switch (zeichen) {
case 32: return CHAR_5BIT[36];
case 33: return CHAR_5BIT[37];
case 58: return CHAR_5BIT[38];
case 46: return CHAR_5BIT[39];
case 44: return CHAR_5BIT[40];
case 64: return CHAR_5BIT[41];
}
// upper case letters
if ((zeichen >= 65) & (zeichen <= 90)) {
return CHAR_5BIT[zeichen - 65];
}
// lower case letters
if ((zeichen >= 97) & (zeichen <= 122)) {
return CHAR_5BIT[zeichen - 97];
}
// digits
if ((zeichen >= 48) & (zeichen <= 57)) {
return CHAR_5BIT[zeichen - 22];
}
}
void write_char(char zeichen, int ebene, byte brightness = LEDLEVEL) {
ebene = constrain(ebene, 0, CUBESIZE - 1);
unsigned long pattern = char_to_5bits(zeichen);
unsigned long mask = 0B1000000000000000000000000;
Serial.println("\nPattern: " + (String)(pattern));
for (byte y = 0; y < CUBESIZE; y++) {
for (byte x = 0; x < CUBESIZE; x++) {
Serial.print( pattern & mask );
if (pattern & mask) {
cube[(CUBESIZE - 1) - x][ebene][y] = brightness ;
} else {
cube[(CUBESIZE - 1) - x][ebene][y] = 0 ;
}
mask >>= 1;
//mask = mask << 1;
}
}
}
void hello_cube(int duration) {
const char* message = "mama ist die beste!@!@@ " ;
for (size_t mp = 0; mp < strlen(message); mp++ ) {
int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -2);
write_char(message[mp], max(s, 0), LEDLEVEL);
s--;
delay(50);
}
delay(200);
}
}
void text_cube(const char *message){
for (size_t mp = 0; mp < strlen(message); mp++ ) {
int s = CUBESIZE - 1;
for (int i = 0; i < (CUBESIZE + LEDLEVEL); i++) {
dimm_cube(LEDLEVEL / -2 );
write_char(message[mp], max(s, 0), LEDLEVEL);
s--;
delay(50);
}
delay(200);
}
}
void glow_cube(int duration) {
ende = millis() + duration * 1000;
int glow = 0;
int glch = 1;
fill_cube(glow);
while (millis() < ende) {
glow += glch; // ((ende - millis()) / 200) % (LEDLEVEL + 1);
if (glow <= 0){
glow = 0;
glch = 1;
} else if (glow >= LEDLEVEL){
glow = LEDLEVEL;
glch = -1;
}
fill_cube(glow);
delay(100);
}
}
void glitzer_cube(int duration) {
start = millis();
ende = millis() + duration * 1000;
//while ((millis() - start) < 5000 ) {
while (millis() < ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (random(2) > 0) {
cube[x][y][z] = LEDLEVEL;
} else {
cube[x][y][z] = 0;
}
}
}
}
delay(50);
}
}
void glitzer_cube_levels(int duration) {
start = millis();
ende = millis() + duration * 1000;
//while ((millis() - start) < 5000 ) {
while (millis() < ende) {
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = random(LEDLEVEL + 1);
}
}
}
delay(50);
}
}
void glitzer_fade_cube(int duration) {
int cleanup = 5;
fill_cube(0);
/*for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = 0;
}
}
}*/
/* for (byte n = 0; n < traces; n++) {
punkt.randomize();
punkt.show();
}
*/
ende = millis() + duration * 1000;
while (millis() < ende) {
//while ((millis() - start) < 10000 ) {
//punkt.randomize();
//punkt.show();
cube[random(CUBESIZE)][random(CUBESIZE)][random(CUBESIZE)] = random(LEDLEVEL + 1);
cube[random(CUBESIZE)][random(CUBESIZE)][random(CUBESIZE)] = random(LEDLEVEL + 1);
delay(25);
cleanup --;
if (cleanup <= 0) {
cleanup = 5;
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
if (cube[x][y][z] > 0) {
cube[x][y][z] --;
}
}
}
}
}
}
}
void dots_cube(int duration) {
byte x;
byte y;
int speed = 50;
fill_cube(0);
for ( x = 0; x < CUBESIZE; x++) {
for ( y = 0; y < CUBESIZE; y++) {
cube[x][y][0] = LEDLEVEL;
}
}
ende = millis() + duration * 1000;
while (millis() < ende) {
x = random(CUBESIZE);
y = random(CUBESIZE);
if (cube[x][y][0] == 0) {
for (int z = CUBESIZE - 1; z >= 0; --z) {
if (z <= (CUBESIZE - 2))
cube[x][y][z + 2] = 0;
cube[x][y][z + 1] = LEDLEVEL / 2;
cube[x][y][z] = LEDLEVEL;
delay(speed);
}
} else {
for (int z = 1; z < CUBESIZE; z++) {
if (z >= 2)
cube[x][y][z - 2] = 0;
cube[x][y][z - 1] = LEDLEVEL / 2;
cube[x][y][z] = LEDLEVEL;
delay(speed);
}
}
for (byte z = 1; z < CUBESIZE - 1; z++) {
cube[x][y][z] = 0;
}
}
}
void template_cube(int duration) {
// prepare something
ende = millis() + duration * 1000;
while (millis() < ende) {
// manipulate cube[][][]
delay(25);
}
}
void traces_cube() {
start = millis();
int traces = 5;
LED origin[traces];
LED leds[traces];
LED ziel[traces];
int steps[traces];
int pos[traces];
for (byte n = 0; n < traces; n++) {
origin[n] = LED();
origin[n].randomize();
origin[n].z = 0;
leds[n] = LED();
ziel[n] = LED();
ziel[n].randomize();
ziel[n].z = CUBESIZE - 1;
steps[n] = random(5, 20);
pos[n] = 0;
}
for (byte x = 0; x < CUBESIZE; x++) {
for (byte y = 0; y < CUBESIZE; y++) {
for (byte z = 0; z < CUBESIZE; z++) {
cube[x][y][z] = 0;
}
}
}
while ((millis() - start) < 5000 ) {
for (byte n = 0; n < traces; n++) {
leds[n].hide();
pos[n] ++;
leds[n].x = origin[n].x + ( (ziel[n].x - origin[n].x) * pos[n] / steps[n]);
leds[n].y = origin[n].y + ( (ziel[n].y - origin[n].y) * pos[n] / steps[n]);
leds[n].z = (origin[n]).z + ( ((ziel[n]).z - origin[n].z) * pos[n] / steps[n]);
leds[n].show();
}
delay(100);
}
}
void loop() {
int next_duration = random(5, 10);
switch (random(0, 10)) {
case 0:
glow_cube(next_duration);
break;
case 1:
glitzer_cube(next_duration);
break;
case 2:
glitzer_cube_levels(next_duration);
break;
case 3:
glitzer_fade_cube(next_duration);
break;
case 4:
dots_cube(next_duration);
break;
case 5:
text_cube("i@u");
break;
case 6:
text_cube("benjamin");
break;
case 7:
text_cube("annika");
break;
}
/* glitzer_cube(random(5, 20));
glitzer_fade_cube(random(5, 20));
*/
}
// Define the function which will handle the notifications (interrupts)
ISR(timer1Event)
{
// if (Serial)
// Serial.println(frame);
// Reset Timer1 (resetTimer1 should be the first operation for better timer precision)
resetTimer1();
// For a smaller and faster code, the line above could safely be replaced with a call
// to the function resetTimer1Unsafe() as, despite its name, it IS safe to call
// that function in here (interrupts are disabled)
// Make sure to do your work as fast as possible, since interrupts are automatically
// disabled when this event happens (refer to interrupts() and noInterrupts() for
// more information on that)
draw_cube_layer(frame % CUBESIZE, frame % LEDLEVEL);
frame ++;
}

View file

@ -1,79 +0,0 @@
#include <Arduino.h>
#include "CubeBase.h"
#include "CubeEffects.h"
#include "CubeTextEffects.h"
void setup() {
// Serial.begin(115200);
init_cube();
randomSeed(analogRead(A0) + analogRead(A1) + analogRead(A2));
// cube_startup();
}
// const char* messages = {"I°U", "mama ist die allerbeste!°!°", "benjamin",
// "annika", "5x5x5 led-cube"};
//static const char *const messages[] = {"I°U", "mama ist die allerbeste!°!°",
// "benjamin", "annika", "5x5x5 led-cube"};
static const char *const messages[] = {"silvester", "2017>2018", "2018",
"ohh, ahh", "led-cube"};
int message_count = 5;
void loop() {
// int next_duration = random(10, 20);
//switch (9) {
switch (random(20)) {
case 0:
cube_effect_glow();
break;
case 1:
cube_effect_glitzer_fade();
break;
case 2:
cube_effect_glitzer_levels();
break;
case 3:
cube_effect_glitzer();
break;
case 4:
cube_effect_dots();
break;
case 5:
//cube_startup();
cube_effect_glitzer_levels();
break;
case 6:
cube_text_banner(messages[random(message_count)]);
break;
case 7:
cube_text_warp(messages[random(message_count)]);
break;
case 8:
cube_life();
break;
case 9:
// Serial.println("cube_moving_dots");
cube_moving_dots();
break;
/*
case 8:
if (random(10) > 5)
text_cube("LED-Cube 5*5*5");
else
banner_cube("LED-Cube 5*5*5 ");
*/
/*write_char('v', 0);
write_char('x', 4);
rotate_cube(10);
fill_cube(0);*/
}
/* glitzer_cube(random(5, 20));
glitzer_fade_cube(random(5, 20));
*/
}

101
src/src/TimerOne.cpp Normal file
View file

@ -0,0 +1,101 @@
/*
* Interrupt and PWM utilities for 16 bit Timer1 on ATmega168/328
* Original code by Jesse Tane for http://labs.ideo.com August 2008
* Modified March 2009 by Jérôme Despatis and Jesse Tane for ATmega328 support
* Modified June 2009 by Michael Polli and Jesse Tane to fix a bug in setPeriod() which caused the timer to stop
*
* This is free software. You can redistribute it and/or modify it under
* the terms of Creative Commons Attribution 3.0 United States License.
* To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/
* or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
*
*/
#include "TimerOne.h"
TimerOne Timer1; // preinstatiate
ISR(TIMER1_OVF_vect) // interrupt service routine that wraps a user defined function supplied by attachInterrupt
{
Timer1.isrCallback();
}
void TimerOne::initialize(long microseconds)
{
TCCR1A = 0; // clear control register A
TCCR1B = _BV(WGM13); // set mode as phase and frequency correct pwm, stop the timer
setPeriod(microseconds);
}
void TimerOne::setPeriod(long microseconds)
{
long cycles = (F_CPU * microseconds) / 2000000; // the counter runs backwards after TOP, interrupt is at BOTTOM so divide microseconds by 2
if(cycles < RESOLUTION) clockSelectBits = _BV(CS10); // no prescale, full xtal
else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS11); // prescale by /8
else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS11) | _BV(CS10); // prescale by /64
else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS12); // prescale by /256
else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS12) | _BV(CS10); // prescale by /1024
else cycles = RESOLUTION - 1, clockSelectBits = _BV(CS12) | _BV(CS10); // request was out of bounds, set as maximum
ICR1 = pwmPeriod = cycles; // ICR1 is TOP in p & f correct pwm mode
TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR1B |= clockSelectBits; // reset clock select register
}
void TimerOne::setPwmDuty(char pin, int duty)
{
unsigned long dutyCycle = pwmPeriod;
dutyCycle *= duty;
dutyCycle >>= 10;
if(pin == 1 || pin == 9) OCR1A = dutyCycle;
else if(pin == 2 || pin == 10) OCR1B = dutyCycle;
}
void TimerOne::pwm(char pin, int duty, long microseconds) // expects duty cycle to be 10 bit (1024)
{
if(microseconds > 0) setPeriod(microseconds);
if(pin == 1 || pin == 9) {
DDRB |= _BV(PORTB1); // sets data direction register for pwm output pin
TCCR1A |= _BV(COM1A1); // activates the output pin
}
else if(pin == 2 || pin == 10) {
DDRB |= _BV(PORTB2);
TCCR1A |= _BV(COM1B1);
}
setPwmDuty(pin, duty);
start();
}
void TimerOne::disablePwm(char pin)
{
if(pin == 1 || pin == 9) TCCR1A &= ~_BV(COM1A1); // clear the bit that enables pwm on PB1
else if(pin == 2 || pin == 10) TCCR1A &= ~_BV(COM1B1); // clear the bit that enables pwm on PB2
}
void TimerOne::attachInterrupt(void (*isr)(), long microseconds)
{
if(microseconds > 0) setPeriod(microseconds);
isrCallback = isr; // register the user's callback with the real ISR
TIMSK1 = _BV(TOIE1); // sets the timer overflow interrupt enable bit
sei(); // ensures that interrupts are globally enabled
start();
}
void TimerOne::detachInterrupt()
{
TIMSK1 &= ~_BV(TOIE1); // clears the timer overflow interrupt enable bit
}
void TimerOne::start()
{
TCCR1B |= clockSelectBits;
}
void TimerOne::stop()
{
TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // clears all clock selects bits
}
void TimerOne::restart()
{
TCNT1 = 0;
}